Tuesday, 26 July 2011

About Science


Scientific Measurement
                  Size of Earth
                  Size of the Moon
                  Distance to the Moon
                  Distance to the Sun
                  Size of the Sun
            Mathematics—The Language of Science
            Scientific Methods
            The Scientific Attitude
                     Pseudoscience  
            Science, Art, and Religion
            Science and Technology
                     Risk Assessment   
            Physics—The Basic Science
            In Perspective

Much of this introductory chapter, like most introductions, can be regarded as a personal essay by the author. While many physics instructors may discuss somewhat different topics in a somewhat different way, the comments made here may prove to be useful as a background for further comments of your own.

The early role of measurements of the Earth, Moon, and Sun by Eratosthenes and Aristarchus provides a high-interest treatment and a good kickoff for your course. More on this is found in the excellent book Physics for the Inquiring Mind, by Eric Rogers, originally published in 1960 by Princeton University Press.

You may consider elaborating on the idea about the possible wrongness versus rightness of ideas; an idea that characterizes science. This is generally misunderstood, for it is not generally a criterion in other disciplines. State that it is the prerogative of science, in contrast to the speculative procedures of philosophy and meta-physics, to embrace only ideas that can be tested and to disregard the rest. Ideas that can’t be tested are not necessarily wrong—they are simply useless insofar as advancement in scientific knowledge is concerned. Ideas must be verifiable by other scientists. In this way science tends to be self-correcting.

Expand on the idea that honesty in science is not only a matter of public interest, but is a matter of self-interest. Any scientist who misrepresents or fudges data, or is caught lying about scientific information, is ostracized by the scientific community. There are no second chances. The high standards for acceptable performance in science, unfortunately, do not extend to other fields that are as important to the human condition. For example, consider the standards of performance required of politicians.

Distinguish between hypothesis, theory, fact, and concept. Point out that theory and hypothesis are not the same. A theory applies to a synthesis of a large body of information. The criterion of a theory is not whether it is true or untrue, but rather whether it is useful or nonuseful. A theory is useful even though the ultimate causes of the phenomena it encompasses are unknown. For example, we accept the theory of gravitation as a useful synthesis of available knowledge that relates to the mutual attraction of bodies. The theory can be refined, or with new information it can take on a new direction. It is important to acknowledge the common misunderstanding of what a scientific theory is, as revealed by those who say, “But it is not a fact; it is only a theory.” Many people have the mistaken notion that a theory is tentative or speculative, while a fact is absolute.

Impress upon your class that a fact is not immutable and absolute, but is generally a close agreement by competent observers of a series of observations of the same phenomena. The observations must be testable. Since the activity of science is the determination of the most probable, there are no absolutes. Facts that were held to be absolute in the past are seen altogether differently in the light of present-day knowledge.

By concept, we mean the intellectual framework that is part of a theory. We speak of the concept of time, the concept of energy, or the concept of a force field. Time is related to motion in space and is the substance of the Theory of Special Relativity. We find that energy exists in tiny grains, or quanta, which is a central concept in the Quantum Theory. An important concept in Newton’s Theory of Universal Gravitation is the idea of a force field that surrounds a material body. A concept envelops the overriding idea that underlies various phenomena. Thus, when we think “conceptually” we envelop a generalized way of looking at things.

Prediction in science is different than prediction in other areas. In the everyday sense, one speaks of predicting what has not yet occurred, like whether or not it will rain next weekend. In science, however, prediction is not so much about what will happen, but about what is happening and is not yet noticed, like what the properties of a hypothetical particle are and are not. A scientist predicts what can and cannot happen, rather than what will or will not happen.

Max Born, Nobel-prize recipient and one of the most outstanding physicists of the twentieth century, is quoted in the insight box of page 15. It was to a letter to Max by his close friend Albert Einstein in 1926 that Einstein made his famous remark regarding quantum mechanics, often paraphrased as “God does not play dice with the universe.” Max Born died in 1970, and was the maternal grandfather of the popular singer Olivia Newton-John.

Science and technology: In discussions of science and technology and their side effects, a useful statement is: You can never do just one thing. This is similar to “there is never just one force” in discussions of Newton’s third law.

 “Any sufficiently advanced society is indistinguishable from magic.” Arthur C. Clark

Science and Religion: Do the two contradict each other—must one choose between them? These questions are foremost among many students, yet physics texts usually sidestep such questions, for religion is very personal for so many people. I hope the very brief treatment in the text presents a satisfactory answer to these questions. Your feedback on this matter will be appreciated.

With regard to science courses and liberal arts courses, there is a central factor that makes it difficult for liberal arts students to delve into science courses the way that science students can delve into liberal arts courses—and that’s the vertical nature of science courses. They build upon each other, as noted by their prerequisites. A science student can take an intermediate course in literature, poetry, or history at any time, and in any order. But in no way can a humanities student take an intermediate physics or chemistry course without first having a foundation in elementary physics and mathematics. Hence the importance of this conceptual course.

Except of the measurements by early Greek scientists, I do not lecture about Chapter 1 material and instead assign it as reading. It can be omitted without interfering with the following chapters.

No comments:

Post a Comment